Pythagorean Triangle With<br>(One leg of right triangle $p^{2}-q^{2}$ ) -2 $\frac{\text { area }}{\text { perimeter }}=\alpha^{3}-\beta^{3}$<br>S. Sriram ${ }^{1}$, P. Veeramallan ${ }^{2}$<br>${ }^{1}$ Assistant Professor, P. G \& Research Department of Mathematics, National College, Tiruchirappalli, Tamilnadu, India<br>${ }^{2}$ Post Graduate Assistant in Mathematics,GHSS, Perumangalam, Villupuram, Tamilnadu, India


#### Abstract

Pattern of Pythagorean Triangle for each of which, the ratio (One leg of right trinagle $\left(p^{2}-q^{2}\right)$ ) $2\left(\frac{\text { Area }}{\text { Perimeter }}\right)$ may be expressed as the difference to two cubes as integers. A few interesting relations are also given.


Keywords : Pythagorean triangle, Ratio (Area/perimeter) as Difference of Two Cubic Integers.

## I. INTRODUCTION

It is well known that Pythagoras triangle is a treasure house which contains many interesting results for an extensive review of the literature. The method of obtaining three non-zero integers $x$, y and z under certain relations satisfying the equation $x^{2}+y^{2}=z^{2}$ has been a matter of interest to various mathematicians. One may refer [1-7]. In [8-11] special Pythagoras problems are studies. In this communication we, present yet another interest Pythagorean Triangles, where in each of which, (One leg of right trinagle ( $p^{2}-$ $\left.\left.q^{2}\right)\right)-2\left(\frac{\text { Area }}{\text { Perimeter }}\right)$ may be expressed as thedifference to two cubes as integers. A few interesting relations are also given. In addition, the recurrence relations for the sides of the triangle are presented.

## Notation

$t_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]=$ poligonal number of rank $n$ with $\operatorname{sides} m$

## II. METHODS AND MATERIAL

## Method of Analysis

The most cited solution of the Pythagorean equation $x^{2}+y^{2}=z^{2}$ is

$$
\begin{align*}
& x=2 p q \\
& y=p^{2}-q^{2} \text { where } p>q>0  \tag{1}\\
& z=p^{2}+q^{2}
\end{align*}
$$

Denoting the Area and the Perimeter of the above Pythagorean triangle by A and P respectively, the assumption that the ratio $\frac{A}{P}$ can be expressed as the difference of two cubic non zero integers leads to the equation

$$
\begin{equation*}
p(p-q)=\alpha^{3}-\beta^{3} \tag{2}
\end{equation*}
$$

Where $\alpha, \beta$ are the non zero integer. $(\alpha>\beta>0)$ Choosing

$$
\begin{equation*}
p=\alpha^{2}+\beta^{2}+\alpha \beta, \quad p-q=\alpha-\beta \tag{3}
\end{equation*}
$$

in (2), and solving we get, $p=\alpha^{2}+\beta^{2}+\alpha \beta$ and

$$
\begin{equation*}
q=\alpha^{2}+\beta^{2}+\alpha \beta-\alpha+\beta \tag{4}
\end{equation*}
$$

In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

## III. REFERENCES

$$
\begin{gathered}
x(\alpha, \beta)=2 p q \quad \Rightarrow x=2 \alpha^{4}+ \\
2 \beta^{4}+6 \alpha^{2} \beta^{2}+4 \alpha \beta^{3}+4 \alpha^{3} \beta+2 \beta^{3}-2 \alpha^{3}(5)
\end{gathered}
$$

$$
\begin{gather*}
y(\alpha, \beta)=p^{2}-q^{2} \Rightarrow y=2 \alpha^{3}-2 \beta^{3}+2 \alpha \beta-  \tag{6}\\
\alpha^{2}-\beta^{2}
\end{gather*}
$$

$$
\alpha^{-}-p^{x}
$$

$$
z(\alpha, \beta)=p^{2}+q^{2} \Rightarrow x=2 \alpha^{4}+2 \beta^{4}+
$$

$$
6 \alpha^{2} \beta^{2}+4 \alpha \beta^{3}+4 \alpha^{3} \beta+2 \beta^{3}-2 \alpha^{3}+2 \beta^{3}-
$$

$$
\begin{equation*}
2 \alpha \beta+\alpha^{2}+\beta^{2}, \text { where } \alpha>\beta \tag{7}
\end{equation*}
$$

Few examples are given

| $\alpha$ | $\beta$ | p | q | x | y | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 7 | 6 | 88 | 13 | 85 |
| 4 | 3 | 37 | 36 | 2664 | 73 | 2665 |
| 5 | 4 | 61 | 60 | 7320 | 121 | 7321 |
| 9 | 7 | 193 | 191 | 73726 | 768 | 73730 |
| 3 | 2 | 19 | 18 | 684 | 37 | 685 |
| 7 | 3 | 79 | 75 | 11850 | 616 | 11816 |
| 5 | 2 | 39 | 36 | 2808 | 225 | 2817 |
| 7 | 4 | 93 | 90 | 16740 | 549 | 16749 |
| 8 | 5 | 129 | 126 | 32508 | 765 | 32517 |
| 7 | 2 | 67 | 62 | 8308 | 645 | 8333 |

## Properties

1. $x(\alpha, \beta) \equiv 0(\bmod 2)$
2. $x(\alpha, 1)-4 \alpha$ Pen $_{\alpha}-O b l_{\alpha}+2 \alpha$ is a perfect square.
3. $6\left(x(\alpha, 1)-4 \alpha \mathrm{Pen}_{\alpha}-O b l_{\alpha}+2 \alpha\right)$ is a nasty number.
4. $(x-z)+\left(\alpha^{2}+\beta^{2}\right) \equiv 0(\bmod 2)$
5. $6(z-x)$ is a nasty number.
6. $y(\alpha, \beta)+\left(\alpha^{2}+\beta^{2}\right) \equiv 0(\bmod 2)$
7. $z(\alpha, 1)=\left(T_{4, \alpha}+1\right)\left(4 T_{3, \alpha}+5\right)$
8. $z(\alpha, 1)=4\left(T_{4, \alpha}\right)\left(T_{3, \alpha}\right)+2 T_{9, \alpha}+7 \alpha+5$
9. $y(\alpha, 1)-\left(\alpha^{2}+1\right) \equiv 0(\bmod 2)$
10. $z(\alpha, \beta)-\left(\alpha^{2}+\beta^{2}\right) \equiv 0(\bmod 2)$
11. $z(\alpha, 1)-4 \alpha$ Pen $_{\alpha}-12 \operatorname{Tri}_{\alpha}-5$ is a perfect square.
12. $x(\alpha, \beta)-(y(\alpha, \beta)+z(\alpha, \beta)) \equiv 0(\bmod 2)$
13. $x(\alpha, \beta)-(y(\alpha, \beta)+z(\alpha, \beta))+2\left(\alpha^{3}-\beta^{3}\right)$ is a perfect square
14. $y(\alpha, \beta)+\left(\alpha^{2}+\beta^{2}\right) \equiv 0(\bmod 2)$
15. $y+z=0(\bmod 2)$
16. $x-(y+z)=0(\bmod 2)$
[1] Dicksen, L.E., History of the theory of numbers, Vol. II, Chelsea Publishing Company, New York (1952).
[2] Smith, D.E., History of Mathematics, Vol. I and II, Dover Publications, New York (1953).
[3] Boyer, Carl, B. and Merzbach, U.T.A.C., A History of Mathematics, John Wiley and Sons (1989).
[4] Akituro, Nishi, A method of obtaining Pythagorean Triples, Amer. Math. Monthly, Vol. 94, No. 9, 869-871 (1987).
[5] Albert H. Beiler, "Recreations in the Theory of Numbers", Dover Publications, New York, 1963.
[6] S. B. Malik, "Basic Number Theory", Vikas Publishing House Pvt. Limited, New Delhi. 1998.
[7] L. J. Mordell, "Diophatine Equations", Academic Press, New York, 1969.
[8] S.G. Telang, "Number Theory", Tata McGrawHill Publishing Company, New Delhi, 1996.
[9] Thomas Koshy, "Elementary number Theory with Applications", Academic Press, 2005.
[10] T.Nagell, "Introduction to Number Theory", plencem, New York, 1969.
[11] Gopalan, M.A., Note on Integral Solutions of X2 $+\mathrm{Y} 2=\mathrm{Z} 2$, ActaCienciaIndica, Vol. XXVII M, No. 4, 493 (2001)
[12] M. A. Gopalan and S. Leelavathi "Pythagorean Triangle with 2(Area / Perimeter) as a Cubic Integer", Bulletin of Pure and Applied Sciences, Vol. 27, No. E(2),2007, pp. 197-200.
[13] M. A. Gopalan and G. Janaki "Pythagorean Triangle with Area / Perimeter as a special polygonal number", Bulletin of Pure and Applied Sciences,Vol.27, No.E(2),2007, pp.393-402.
[14] M. A. Gopalan and S. Devibala, Pythagorean Triangle: A Treassure House, Proceeding of the KMA National Seminar on Algebra, Number Theory and Applications to Coding and Cryptanalysis, Little Flower College, Guruvayur, September 16-18, 2004
[15] M. A. Gopalan and S. Devibala, "Pythagorean Triangle with Triangular number as a leg", Impact J.Sci.Tech.vol.2(4),2008,pp.195-199..
[16] M. A. Gopalan and S. G.Janaki, "Pythagorean Triangle with Nasty number as a leg",Journal of Applied Mathematical Analysis and Appliations",vol.4(1-2),2008,pp.13-17.
[17] M. A. Gopalan and S. G.Janaki,"Pythagorean Triangle with Perimeter as a pentagonal number", AntarcticaJ.Math.,vol.5(2),2008,pp.15-18.
[18] M. A. Gopalan and G. Gnanam "Pythagorean Triangles and special polygonal numbers",International Journal of Mathematical Sciences vol.9(1-2),,2010,pp.211-215.
[19] M. A. Gopalan and G. G. Sangeetha, "Pythagorean Triangles with Perimeter as Triangular number",Global Journal of Applied Mathematics and Mathematical Sciences,vol.3(12), 2010,pp.93-97.
[20] M. A. Gopalan and B. Sivakami, "Pythagorean Triangle with Hypotenuse minus2(Area /Perimeter) as a Square Integer", Archimedes J.Math., vol.2(2),2012, pp. 153-166.
[21] M. A. Gopalan and V. Geetha, "Pythagorean Triangle with Area / Perimeter as a special polygonal number", International Refereed Journal of Engineering and Science, vol.2(7),2013, pp.28-34.
[22] M. A. Gopalan and ManjuSomanath and K. Geetha, "Pythagorean Triangle with Area / Perimeter as a special polygonal number", IOSRJM, vol.7(3),2013, pp. 52-62.
[23] M. A. Gopalan and ManjuSomanath and V. Sangeetha, "Pythagorean Triangles and pentagonal number", Cayley J.Math,vol.2(2),2013, pp.151-156.
[24] M. A. Gopalan and ManjuSomanath and V. Sangeetha, "Pythagorean Triangles and speial pyramidal numbers", IOSR-JM,vol.7(4),2013, pp. 21-22.
[25] P. Thirunavukkarasu and S. Sriram, "Pythagorean Triangle with Area / Perimeter as quartic integer", International Journal of Engineering and Innovative Technology (IJEIT), vol.3(7), 2014, pp.100-102.
[26] M A. Gopalan and R. Anbuselvi, A Special Pythagorean Triangle, ActaCienciaIndica XXXI M, No. 1, p. 053, 2005.
[27] M. A. Gopalan and S. Devibala, On a Pythagorean Problem, ActaCienciaIndica, XXX II M, No. 4, p. 1451, 2006.
[28] S.Sriram, "Pythagorean Triangle with (one Leg of Right Triangle $p^{\wedge} 2-q^{\wedge} 2 \quad$ )2(area/perimeter) $=\alpha \beta^{\prime \prime}$, International Journal of Engineering and Innovative Technology, IJEIT, vol. 6, Issue. 2, august2016.
[29] M. A. Gopalan and S. Leelavathi "Pythagorean Triangle with Area / Perimeter as a Square Integer", International Journal of Mathematics, Computer Sciences and Information Technology Vol. 1, No. 2, July-December 2008, pp. 199-204.
[30] M. A. Gopalan and J. Kaliga Rani, A Special Pythagorean Triangle, ActaCienciaIndica, XXX II M, No. 4, p. 1451, 2006.
